Архангельск (8182)63-90-72 Астана (7172)727-132 Астаракан (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844/278-03-48 Волоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)84-55-89 Иваново (4932)77-34-06 Нжевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемеров (3842)65-04-62 Киров (8332)68-02-04 Красновар (861)203-40-90 Красноврек (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Орейбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Таджикистан (992)427-82-92-69 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://katrabel.nt-rt.ru/ || kbr@nt-rt.ru

Приложение к свидетельству № 57181 об утверждении типа средств измерений

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Лист № 1 Всего листов 11

Теплосчетчики SKU-02

Назначение средства измерений

Теплосчетчики SKU-02 (далее – счетчики) предназначены для измерения и регистрации тепловой энергии в водяных системах теплоснабжения закрытого и открытого типа, объема воды в системах водоснабжения.

Описание средства измерений

Счетчик является комбинированным, многоканальным, многофункциональным микропроцессорным устройством со встроенным цифробуквенным индикатором.

Принцип работы счетчика основан на измерении параметров теплоносителя в трубопроводах и последующем определении тепловой энергии путем обработки результатов измерений.

В состав счетчика входят:

- вычислитель;
- датчики потока (ПП);
- термопреобразователи сопротивления (TC), кроме модификаций SKU-02-F1 (SKU-02-B-F1) и SKU-02-F2 (SKU-02-B-F2).

В зависимости от конфигурации и количества измеряемых параметров счетчики представлены несколькими модификациями.

Обозначение модификаций счетчика, область применения, формула расчета тепловой энергии, количество термопреобразователей сопротивления и датчиков потока приведены в таблице 1

В соответствии с заданной конфигурацией счетчик должен производить прием и обработку измерительной информации в системах потребления тепловой энергии, в каждой из которых может быть реализована одна из схем учета.

Счетчики всех модификаций, кроме SKU-02-F1(SKU-02-B-F1) и SKU-02-F2 (SKU-02-B-F2), применяются для учета тепловой энергии, объема и массы воды.

Счетчики модификаций SKU-02-F1(SKU-02-B-F1) и SKU-02-F2 (SKU-02-B-F2) применяются только для измерения расхода и объема воды

В состав счетчика дополнительно могут входить два расходомера (датчика потока) со стандартным выходным импульсным сигналом с напряжением от 2,5 до 3,7 В и частотой от 5 до 200 Γ ц и два преобразователя давления (ДИД) с пределами допускаемой приведенной погрешности ± 1 % и стандартным выходным токовым сигналом, пропорциональным избыточному давлению: от 0 до 0,6; от 0 до 1,0 или от 0 до 1,6 МПа. Типы счетчиков воды и преобразователей давления указаны в разделе «Комплектность средства измерения»

ТС, входящие в состав счетчика, имеют следующие номинальные статические характеристики: $Pt\ 100\ (100\ \Pi)$ или $Pt\ 500\ (500\ \Pi)$ класса A или B по Γ OCT 6651-2009 .

Счетчик поддерживает обмен информацией по стандартному последовательному интерфейсу RS 232(RS485) или через оптический порт, посредством которого считываются текущие и статистические данные параметров систем теплоснабжения и данные используемой модификации счетчика. Счетчик также обеспечивает вывод информации непосредственно на принтер.

В счетчиках модификаций SKU-02-K и SKU-02-B допускается устанавливать вычислители непосредственно на корпус датчика потока при температуре теплоносителя не более $90\,^{\circ}\mathrm{C}$.

Таблица 1

· · · · · · · · · · · · · · · · · · ·				
Область применения	Формула расчета тепловой энергии	Обозначение модификации счетчика	Количество TC	К-во ПП,
1	2	3	4	5
Систоми	E=E1 -E2	SKU-02-A1	3	2
Системы теплоснабжения	E1= $V_1 \times p_1 (h_1 - h_c)$ E2= $V_2 \times p_2 (h_2 - h_c)$	SKU-02-B-A	<u> </u>	2
		SKU-02-A2	2	2
открытого типа		SKU-02-B-AC		2
		SKU-02-U1	2	1
	$E = V_1 \bullet p_1 \times (h_1 - h_2)$	SKU-02-K-U1		
Системы	$\mathbf{E} = \mathbf{v}_1 \cdot \mathbf{p}_1 \wedge (\mathbf{n}_1 - \mathbf{n}_2)$	SKU-02-U3	2	2
теплоснабжения		SKU-02-B-U1F		
закрытого типа		SKU-02-U2	2	1
закрытого типа	$E = V_2 \bullet p_2 \times (h_1 - h_2)$	SKU-02-K-U2		
	$E = \mathbf{V}_2 \bullet \mathbf{p}_2 \times (\mathbf{n}_1 - \mathbf{n}_2)$	SKU-02-U4	2	2
		SKU-02-B-2F		
Системы горячего	$E = V_1 \bullet p_1 \times (h_1 - h_c)$	SKU-02-U5	1	1
водоснабжения	$E = V_1 \cdot p_1 \times (n_1 - n_c)$	SKU-02-B-A3	1	1
Системы		SKU-02-F1		1
водоснабжения		SKU-02-B-F1	-	
		SKU-02-F2	-	2
		SKU-02-B-F2		
	E = E1 + E2			
	$E1 = V_1 \bullet p_1 \bullet (h_1 - h_2)$	SKU-02-K1	3	2
Системы учета	$E2 = V_3 \bullet p_3 \bullet (h_2 - h_3)$	SKU-02-B-A4		
отпущенной	E=E1 +E2			
тепловой энергии	$E1 = V_2 \bullet p_2 \bullet (h_1 - h_2)$	SKU-02-K2	3	2
	• .	SKU-02-B-A2	3	
	$E2=V_3 \bullet p_3 \bullet (h_1-h_3)$	5110 02 5 112		
	E = E1 + E2			
Комбинированные	$E1 = V_1 \bullet p_1 \bullet (h_1 - h_2)$	SKU-02-B-U1A3	3	2
системы отопления	$E1 = V_1 p_1 (h_1 h_2)$ $E2 = V_2 \cdot p_3 \cdot (h_3 - h_c)$		5	
и горячего водо-	22 - 72 ps (iiis iiic)			
снабжения	E=E1+E2			
	$E1 = V_1 \bullet p_2 \bullet (h_1 - h_2)$	SKU-02-B-U2A3	3	2
	$E2 = V_2 \bullet p_3 \bullet (h_3 - h_c)$			
L	=== v ₂ p ₃ (n ₃ n _c)	l		ı

Примечание:

 $V_{\rm I}, V_{\rm 2}$, $V_{\rm 3}$ - значения объема воды, измеренные соответствующими датчиками потока;

 $p_1...\ p_3$ - плотности воды, соответствующие температурам T1...T3;

 $h_1...h_3\,$ - энтальпии воды, соответствующие температурам T1...T3

 h_{c} - энтальпия воды, соответствующая температуре холодной воды;

Е - суммарная тепловая энергия;

Е1, Е2 – тепловая энергия 1-го и 2-го канала измерения

Счетчик осуществляет:

измерение и индикацию:

- текущего значения объемного расхода теплоносителя $[m^3/4]$ в трубопроводах, на которых установлены датчики потока (от 1 до 2 в зависимости от конфигурации счетчика);
- температуры теплоносителя [°C] в подающем и обратном трубопроводах (кроме модификаций SKU-02-F1(SKU-02-B-F1) и SKU-02-F2(SKU-02-B-F2));
- температуры холодной воды (измеренной или установленной программно в зависимости от модификации счетчика, кроме модификаций SKU-02-F1(SKU-02-B-F1) и SKU-02-F2(SKU-02-B-F2));
- избыточного давления [МПа] в трубопроводах, на которых установлены преобразователи давления (до 2 в зависимости от конфигурации счетчика);
- текущего времени (с указанием часов, минут, секунд) и даты (с указанием числа, месяца, года);
- времени возникновения ошибки и индикацию кода ошибки;

• вычисление и индикацию:

- текущего значения массового расхода теплоносителя [т/ч] в трубопроводах, на которых установлены датчики потока;
- разности температур теплоносителя [°C] в подающем и обратном (или трубопроводе холодного водоснабжения) трубопроводах;
- суммарного текущего значения тепловой мощности [кВт] в каждом канале;
- среднечасовых и среднесуточных значений температур t [°C] теплоносителя;
- среднечасовой и среднесуточной разности температур Δt [°C] между подающим и обратным трубопроводами;
- среднечасовых и среднесуточных измеряемых значений давления в трубопроводах [МПа];

• накопление, хранение и индикацию:

- суммарного с нарастающим итогом значения потребленной (отпущенной) тепловой энергии [ГДж ,Гкал , МВт ;];
- суммарных с нарастающим итогом значений объема [м³] или массы [т] теплоносителя;
- времени работки [ч];
- времени работы в нештатных ситуациях [ч];

• сохранение в энергонезависимой памяти:

- потребленной (отпущенной) тепловой энергии за каждый час, день и месяц [ГДж, Гкал, МВт⋊] по каждому каналу измерения;
- массы [т] или объема [м³] теплоносителя, протекшего за каждый час, день и месяц по трубопроводам, на которых установлены датчики потока;
- времени [ч, мин] нормальной работы за каждый час, сутки и месяц;
- времени работы в нештатных ситуациях [ч, мин] за каждый час, сутки и месяц;
- информации о возникающих ошибках за каждый час, сутки и месяц

Внешний вид счетчиков приведен на рисунках 1-3.

Рисунок 1. Внешний вид счетчиков модификаций SKU-02

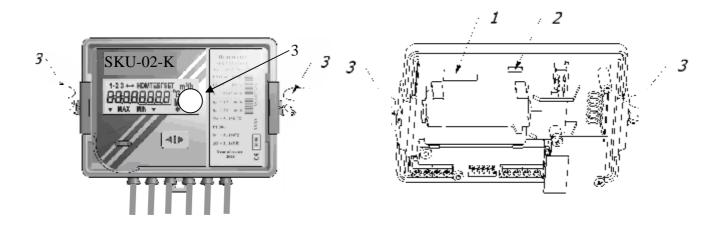

Рисунок 2. Внешний вид счетчиков модификаций SKU-02-В

Рисунок 3. Внешний вид счетчиков модификаций SKU-02-K

Схема пломбировки счетчика для защиты от несанкционированного доступа с указанием мест для нанесения знака поверки и гарантийной пломбы (наклейки) завода-изготовителя приведена на рисунках 4 и 5.

- 1- место нанесения знака поверки;
- 2,3 место нанесения гарантийной пломбы (наклейки)предприятия изготовителя;

Рисунок 4. – Схема пломбировки счетчиков модификации SKU-02-K

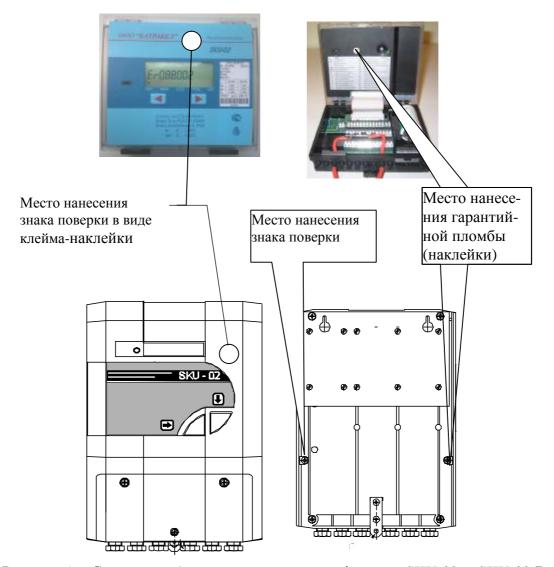


Рисунок 5. – Схема пломбировки счетчиков модификации SKU-02 и SKU-02-В

Программное обеспечение

Метрологически значимая часть программного обеспечения размещается в энергонезависимой части памяти микроконтроллера, запись которой осуществляется в процессе изготовления. Доступ к программе микроконтроллера исключен конструкцией аппаратной части прибора. Внесение изменений в данные, содеражщие результаты измерений функционально невозможно. Класс защиты от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010. Идентификационные данные программного обеспечения приведены в таблице 2.

Таблина 2

таолица 2			
Наименование программ-	Идентификационное	Номер версии (идентифика-	Цифровой идентификатор
ного обеспечения	наименование про-	ционный номер) программ-	программного обеспечения
	граммного обеспечения	ного обеспечения	(текст, отображаемый на
			индикаторе теплосчетчика)
Версия программы для	SKU02	1.17	V1.17
исполнения SKU-02	5110 02	1117	, 1117
Версия программы для	SKU02B	3.01	SoFt 3.01
исполнения SKU-02-В	SKC02B	3.01	501 t 5.01
Версия программы для	SKU02K	0.06	SoFt 0.06
исполнения SKU-02-K	SKC02K	0.00	5011 0.00

Метрологические и технические характеристики

Диаметры условного прохода и условное обозначение датчиков потока счетчиков и соответствующие им минимальный (q_i) , номинальный (q_n) , максимальный (q_p) расходы и потери давления (ΔP) представлены в таблице 3.

Таблица 3

аблица 3		_		3.	
Датчик потока		P асход воды, M^3/Ψ		Потери давления	
Диаметр условного прохода	Условное обозначение	Мини- мальный q _i	Номи- нальный q _n	Максималь- ный q _p	(DP) в датчике потоке при q_n , кПа, не более
(DN), MM	1.5.(H)				22.4
15	15(Л)	0,006	0,6	1,2	23,4
20	15(Л)	0,015	1,5	3,0	16,3
20	20(Л)	0,025	2,5	5,0	18,8
25	25(Л)	0,035	3,5	7,0	4
	25	0,15			21,0
32	32(Л)	0,06	6	12,0	10,0
40	32	0,25	10	15	15,0
40	40(Л)	0,1	10	20	10,0
50	50(Л)	0,15	15	30	12,0
	50	0,5	20	30	12,0
65	65(Л)	0,25	25	50	12,0
80	80	1,8	90	180	5,0
	80.1	1,8	90	180	
100	100	2,8	140	280	
	100.1	2,8	140	280	
150	150	6,3	315	630	
	150.1	6,3	315	630	
200	200	11	550	1100	
	200.1	11	550	1100	
250	250	17	850	1700	
	250.1	17	850	1700	
300	300	25	1750	2500	2,5
	300.1	25	1750	2500	2,5
400	400	42	2100	4200	
	400.1	42	2100	4200	
500	500	70	3500	7000	
	500.1	70	3500	7000	
600	600	100	5000	10000	
000	600.1	100	5000	10000	
700	700	150	7500	15000	
	700.1	150	7500	15000	1.5
800	800	180	9000	18000	1,5
800	800.1	180	9000	18000	
1000	1000	280	14000	28000	
	1000.1	280	14000	28000	

	Всего листов 11
Теплоноситель	вода
Рабочее давление, МПа, не более,	1,6
Диапазон измерений расходов теплоносителя, м ³ /ч	см. таблицу 2
Диапазон измерений температуры измеряемой среды, °С	от 0 до 150
(для модификации SKU-02- К и SKU-02- В при установке вычислителя	
непосредственно на датчик потока)	(от 0 до 90)
Диапазон измерений разности температур измеряемой среды, °С	от 3 до 150
(для модификации SKU-02- K и SKU-02- В при установке вычислителя	
непосредственно на датчик потока)	(от 3 до 90)
Диапазоны входных аналоговых сигналов, пропорциональных значе-	
нию избыточного давления, мА	от 4 до 20;
	от 0 до 5;
	от 0 до 20
Класс точности по ГОСТ Р ЕН 1434-1-2006 (ГОСТ Р 51649-2000)	1 (C)
Пределы допускаемой относительной погрешности измерения тепло-	
вой энергии, %	$\pm (2+4\Delta\Theta_{min}/D\Theta +0.01q_p/q)$
Класс точности по ГОСТ Р ЕН 1434-1-2006 (ГОСТ Р 51649-2000)	2 (B)
Пределы допускаемой относительной погрешности измерения тепло-	
вой энергии, %	$\pm (3+4\Delta\Theta_{\min}/D\Theta +0.02q_p/q)$
где: D9 – измеренная разность температур в подающем и обратног	м трубопроволах. (°C).
$D\Theta_{\min}$ -минимальная разность температур в подающем и обрат	
q_{p} , q — значения максимального и измеряемого расходов.	пом трубопроводил, (С),
Пределы допускаемой относительной погрешности измерения объе-	1 (1 : 0.01 /)
ма, массы, расхода воды счетчиков класса 1(С), %	$\pm (1 +0.01 q_p/q)$
Пределы допускаемой относительной погрешности измерения объе-	
ма, массы, расхода воды счетчиков класса 2(В), %	$\pm (2 +0.02 q_p/q)$
Допускаемая относительная погрешность измерения разности темпе-	- . -
ратур (E_t) комплектом термопреобразователей сопротивления, подоб-	
ранных в пару, %, не более	1/0 5 010 /50
	$\pm (0.5 + 3\Delta\Theta_{\min}/D\Theta)$
Весовые коэффициенты выходных импульсных сигналов счетчика в зав	исимости от максималь-

Весовые коэффициенты выходных импульсных сигналов счетчика в зависимости от максимального расхода соответствуют значениям, указанным в таблице 4.

Таблица 4

	Весовые коэффициенты импульсов,	Весовые коэффициенты им-
	пропорциональные	пульсов, пропорциональные
Расход q_p , M^3/q	тепловой энергии,	объему протекшей воды,
	${ m I_E}$, ГДж/имп	Iv, м ³ /имп
q _p £ 3	5·10 ⁻⁷	4.10^{-6}
$q_p = 5$	2·10 ⁻⁷	5.10^{-6}
q _p £ 40	10^{-5}	10^{-4}
$40 < q_p $ £ 500	10 ⁻⁴	10^{-3}
500< q _p £ 7000	10^{-3}	10^{-2}
$q_p > 7000$	10^{-2}	10^{-1}

Знак утверждения типа

наносится типографским способом на титульный лист паспорта и на боковую или переднею панель вычислителя на табличку под защитным экраном.

Комплектность средства измерений

Комплект поставки счетчика соответствует указанному в таблице 5.

Таблица 5

Наименование	Количество
1 Вычислитель	1
2 Датчики потока	*
3 Теплосчетчик SKU-02. Руководство по эксплуатации, паспорт	1
 4 Термопреобразователи сопротивления: - КТСП-Н (Госреестр № 38878-12) - ТСП-Н (Госреестр № 38959-12) 	*
5 Паспорт термопреобразователей сопротивления	*
 6. Расходомеры (датчики потока) - РСМ-05.05 (Госреестр № 57470-14) - РСМ-05-07 (Госреестр № 48755-11) 	**
7. Паспорт на расходомеры (датчики потока)	**
 8. Преобразователи давления - НТ (Госреестр № 26817-13) - ИД (Госреестр № 26818-09) 	**
9. Паспорт на преобразователи давления	**
10. Методика поверки МРБ.МН 920-201	**
11. Упаковка	1
* - количество (в зависимости от модификации) указано в **- количество определяется договором на поставку	таблице 1.

Поверка

осуществляется документу МРБ МП. 920-2011 «Теплосчетчики SKU-02. Методика поверки», утвержденной Республиканским унитарным предприятием «Белорусский государственный институт метрологии» 12.12.2012г.

Основные средства поверки: проливная расходомерная поверочная установка, допускаемая относительная погрешность не более \pm 0,3 %, диапазон измерения расхода от 0,05 до 200 м³/ч; частотомер электронно-счетный ЧЗ-64, допускаемая относительная погрешность не более \pm 0,01 %, диапазон (1...10000) Γ ц; магазины сопротивлений Р4831 кл. точности 0,02.

Сведения о методиках (методах) измерений

Методика измерений приведена в КБ.ПС-50003.03.04-12 «Теплосчетчик SKU-02. Руководство по эксплуатации, паспорт».

Нормативные и технические документы, устанавливающие требования к теплосчетчикам SKU-02

ГОСТ Р ЕН 1434-1-2006 Теплосчетчики. Часть 1. Общие требования. ГОСТ Р ЕН 1434-4-2006 Теплосчетчики. Часть 4. Испытания с целью утверждения типа.

ГОСТ Р 51649-2000 Теплосчетчики для водяных систем теплоснабжения. Общие технические условия.

ГОСТ 12.2.091-2002 «Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 1. Общие требования».

ТУ РБ 800010003.001-2003 «Теплосчетчики SKU-02. Технические условия». МРБ МП. 920-2011 «Теплосчетчики SKU-02. Методика поверки».

Архангельск (8182)63-90-72 Астана (7172)727-132 Астарахань (8512)99-46-04 Бариаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологра (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06
 Ижевск Иркутск
 (3412)26-03-58 (395)279-98-46

 Казань
 (843)206-01-48

 Калининград (4012)72-03-81
 (4012)72-03-81

 Калуга
 (4842)92-23-67

 Кемрово
 (3842)65-04-62

 Киров
 (8332)68-02-04

 Красноар
 (861)203-40-90

 Краснооврск
 (391)204-63-61

 Курск
 (4712)77-13-04

 Липецк
 (4742)52-20-81

 Киргизия
 (996)312-96-26-47
 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Таджикистан (992)427-82-92-69 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://katrabel.nt-rt.ru/ || kbr@nt-rt.ru